Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for November 2024 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for November 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Technical Trading

Does technical trading work, or not? Rationalists dismiss it; behavioralists investigate it. Is there any verdict? These blog entries relate to technical trading.

DJIA-Gold Ratio as a Stock Market Indicator

A reader requested a test of the following hypothesis from the article “Gold’s Bluff – Is a 30 Percent Drop Next?” [no longer available]: “Ironically, gold is more than just a hedge against market turmoil. Gold is actually one of the most accurate indicators of the stock market’s long-term direction. The Dow Jones measured in gold is a forward looking indicator.” To test this assertion, we examine relationships between the spot price of gold and the level of the Dow Jones Industrial Average (DJIA). Using monthly data for the spot price of gold in dollars per ounce and DJIA over the period January 1971 through October 2024, we find that: Keep Reading

Validating Use of Wilder Volatility Stops to Time the U.S. Stock Market

Can investors reliably exploit the somewhat opaquely presented strategy summarized in “Using Wilder Volatility Stops to Time the U.S. Stock Market”, which employs Welles Wilder’s Average True Range (ATR) volatility metric to generate buy and sell signals for broad U.S. stock market indexes? To investigate, we each trading day for the SPDR S&P 500 ETF Trust (SPY):

  1. Compute true range as the greatest of: (a) daily high minus low; (b) absolute value of daily high minus previous close; and, (c) absolute value of daily low minus previous close.
  2. Calculate ATR as the simple average of the last five true ranges (including the current one).
  3. Generate a Wilder Volatility Stop (WVS) by multiplying ATR by a risk factor of 2.5.
  4. When out of SPY, buy when it closes above a dynamic trendline defined by a trend minimum plus current WVS (breakout). When in SPY, sell when it closes below a dynamic trendline defined by a trend maximum minus current WVS (breakdown).

We perform the above calculations using raw (not adjusted for dividends) daily SPY prices, but use dividend-adjusted prices to calculate returns. We assume any breakout/breakdown signal and associated SPY-cash switch occurs at the same close. We initially ignore SPY-cash switching frictions, but then test outcome sensitivity to different levels of frictions. We ignore return on cash due to frequency of switching. We further test outcome sensitivity to parameter choices and to an alternative definition of ATR. We use buy-and-hold SPY as a benchmark. Using daily raw and dividend-adjusted prices for SPY during January 1993 (inception) through most of October 2024, we find that: Keep Reading

Live Test of Short-term Reversal

Short-term reversal is a widely accepted stock return anomaly, with the long-only version glibly termed “buy the dip.” Is short-term reversal readily exploitable? As a live test, we look at the performance of Vesper U.S. Large Cap Short-Term Reversal Strategy ETF (UTRN). This fund seeks to capture bounces of stocks with recent sharp declines by each week:

  • Calculating for the 500 largest U.S. stocks a metric similar to the Sharpe ratio but using an asymmetric volatility to find overreaction dips in downtrending stocks (the Chow ratio).
  • Initially buying the 25 stocks with the lowest Chow ratios.
  • Selling any holdings for which the Chow ratio has risen out of the bottom 50 and replacing them with bottom 25 stocks.

The restriction to large stocks and the differing buy and sell rules suppress trading frictions/portfolio turnover. The benchmark is SPDR S&P 500 ETF Trust (SPY). Using monthly dividend-adjusted returns for UTRN and SPY from the inception of the former in September 2018 through August 2024, we find that: Keep Reading

Pattern Recognition Software Plus Confirming News Sentiment?

Can pattern recognition software, combined with news sentiment, identify profitable short-term stock trades? In their July 2024 paper entitled “Technical Patterns and News Sentiment in Stock Markets”, Markus Leippold, Qian Wang and Min Yang test the ability of pattern recognition software (convolutional neural network) to find profitable technical reversal patterns within U.S. and Chinese stock candlestick charts. They consider four pairs of technical patterns: double tops and bottoms; head and shoulders and inverted head and shoulders; broadening tops and bottoms; and, triangle tops and bottoms. They use Bollinger bands to find local maximums and minimums, with the standard deviation multiplier set at 1.1 based on parameter tuning. They augment pattern recognition with news sentiment from Refinitiv for U.S. stocks since 2003 and from Tonglian for Chinese stocks since 2014 during the 10 trading days around each pattern. They identify combined tops as double tops, head and shoulders, broadening tops or triangle tops coupled with negative news and combined bottoms as double bottoms, inverted head and shoulders, broadening bottoms or triangle bottoms coupled with positive news. They first consider each technical pattern as an independent event and measure abnormal returns for holding intervals of 1, 5, 10, 21 and 42 days after a signal. They then examine the performance of a portfolio of events for a 1-day holding interval. They use U.S. stock data from 1992 to 1999, enhanced via two data augmentation strategies, for pattern recognition software training and validation. They then apply the trained software to U.S. stock data from 2000 through 2021 and Chinese stock data from 2005 through 2021. Combined pattern-sentiment test periods are shorter based on availability of sentiment data. Using price series for all U.S. common stocks and Chinese A-shares and news sentiment data as described through 2021, they find that: Keep Reading

Applying Simple Trend Following Rules to Cryptocurrencies

Can investors manage cryptocurrency volatility risk with simple trend following rules? In their August 2024 paper entitled “Trend-following Strategies for Crypto Investors”, Trinh Hue Le and Ummul Ruthbah test simple trend following rules on Bitcoin (BTC), Ether (ETH) and the S&P Cryptocurrency LargeCap-Ex. MegaCap Index. Specifically, they hold the cryptocurrency (cash) when its price is above (at of below) its prior-day simple moving average (SMA) of 20, 65, 150 or 200 days. To assess net profitability, they consider trading frictions of 0.1%, 0.25% or 0.5% of amount traded. They further measure correlations between the movements of cryptocurrencies and those of the Nasdaq 100 Index. Using daily prices for the S&P BTC, ETH and Cryptocurrency LargeCap-Ex. MegaCap indexes starting January 2016, January 2017 and January 2019, respectively, all through January 2023, and contemporaneous daily levels of the NASDAQ 100 Index, they find that:

Keep Reading

The Value of an Experienced Technician?

Does subjective technical analysis truly add value? In their June 2024 paper entitled “The Power Of Price Action Reading”, Carlo Zarattini and Marios Stamatoudis investigate the value added to simple trading rules by the discretionary judgments of an experienced technician for a sample of stocks with: (1) overnight gaps up over 6%; (2) minimum opening price $2.00; and, (3) minimum pre-market volume at least 200,000 shares. One of the paper’s authors (Marios Stamatoudis) is the expert technician. They assess his abilities both to select the best gaps to trade and to micromanage precise entry points, stop-losses and partial exits at predetermined profit points. To screen out confounding information, they remove dates, ticker symbols, sectors/industries, news, and specific prices/volumes from the his inputs, leaving only an anonymized visual 2-year daily price history for each stock. They present gaps to him randomly, not in chronological order. Using daily pre-gap prices and 1-minute post-gap prices for NYSE and NASDAQ stocks satisfying the above three criteria during January 2016 through December 2023 (9,794 events), they find that:

Keep Reading

Equity Industry/Sector Price Run-ups and Future Returns

A subscriber suggested review of the February 2017 paper “Bubbles for Fama”, in which Robin Greenwood, Andrei Shleifer and Yang You assess Eugene Fama’s claim that stock prices do not exhibit bubbles. They define a bubble candidate as a value-weighted U.S. industry or international sector that rises over 100% in both raw and net of market returns over the prior two years, as well as 50% or more raw return over the prior five years. They define a crash as a 40% drawdown within a two-year interval. They also look at characteristics of industry/sector portfolios identified bubble candidates, including level and change in volatility, level and change in turnover, firm age, return on new versus old companies, stock issuance, book-to-market ratio, sales growth, price-earnings ratio and price acceleration (abruptness of price run-up). They evaluate timing strategies that switch from an industry portfolio to either the market portfolio or cash (with risk-free yield) based on a price run-up signal, or a signal that combines price run-up and other characteristics. Their benchmark is buying and holding the industry portfolio. Using value-weighted returns for 48 U.S. industries (based on SIC code) during January 1926 through March 2014 and for 11 international sectors (based on GICS codes) during October 1985 through December 2014, they find that:

Keep Reading

Within 95% of 12-month High Strategy?

A subscriber asked for confirmation that the strategy described at “Meb Faber’s 12-Month High Switch” (the strategy) is attractive. This strategy at each monthly close:

To investigate, we replicate the strategy, substituting Invesco DB Commodity Index Tracking Fund (DBC) for PDBC to get a longer sample period that includes the 2008-2009 financial crisis. We use an equal-weighted (EW), monthly rebalanced combination of SPY, EFA, VNQ, GLD and DBC as a benchmark. We apply 0.1% frictions to ETF switches but not to simple rebalances, which are generally small. Using monthly dividend-adjusted prices for SPY, EFA, VNQ, GLD and DBC during February 2006 (DBC inception) through June 2024, we find that: Keep Reading

Industry Trend-following over the Long Run

Is industry trend-following an attractive strategy over the long run? In their June 2024 paper entitled “A Century of Profitable Industry Trends”, Carlo Zarattini and Gary Antonacci evaluate the long-term performance of a long-only industry trend-following (Timing Industry) strategy, modeled as follows:

  • Entry – buy an industry when its daily closing price crosses above the upper band of either its 20-day Keltner Channel (with a multiplier of 2 for the high-low price range component) or its 20-day Donchian Channel.
  • Sizing – each day for each open position, calculate 14-day past return volatility as an estimate of its future volatility and resize all open positions so that they contribute equally to overall portfolio volatility, limiting overall portfolio leverage to 200%.
  • Exit – each day for each open position, close the position if it crosses below a stop loss represented by the lower band of either its 40-day Keltner Channel (again with a multiplier of 2 for the high-low price range component) or its 40-day Donchian Channel. However, do not ever lower the stop loss. When a position closes, reinvest proceeds into 1-month U.S. Treasury bills.

For a long-term test, they apply these rules to nearly 98 years of daily returns for 48 hypothetical annually rebalanced, capitalization-weighted industry portfolios constructed by assigning a Standard Industrial Classification (SIC) Code to each stock traded on NYSE, AMEX and NASDAQ. For a recent and more realistic test, they apply these rules to 31 sector exchange-traded funds (ETF) offered by State Street Global Advisors. Utilizing daily returns for the 48 industry portfolios since July 1926 and for the 31 sector ETFs as available (inceptions January 2005 to June 2018), all through March 2024, they find that:

Keep Reading

Testing Wilshire 5000/GDP as Stock Market Predictor

Is the Buffett Indicator, the ratio of total U.S. stock market capitalization (proxied by Wilshire 5000 Total Market Index W5000) to U.S. Gross Domestic Product (GDP), a useful indicator of future U.S. stock market performance? W5000/GDP clearly has no stable average value over its available history (see the first chart below), so the level of the ratio is not a useful predictor. We therefore consider the following variables based on W5000/GDP as predictors of W5000 returns at horizons up to two years:

  1. Quarterly change in W5000/GDP.
  2. Average quarterly change in W5000/GDP over the past two years (eight quarters).
  3. Average quarterly change in W5000/GDP over the past five years (20 quarters).
  4. Slope of W5000/GDP over the past two years.
  5. Slope of W5000/GDP over the past five years.

We consider two kinds of tests: (1) a linear test relating past changes in these variables to future W5000 returns up to two years; and, (2) a non-linear test calculating average next-quarter W5000 returns by ranked fifths (quintiles) of past changes in these variables. Using quarterly levels of W5000 (with extension), Shiller’s P/E10 lagged by one quarter and quarterly GDP lagged by one quarter during the first quarter of 1971 through the first quarter of 2024, we find that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)