Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for January 2025 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for January 2025 (Final)
1st ETF 2nd ETF 3rd ETF

Strategic Allocation

Is there a best way to select and weight asset classes for long-term diversification benefits? These blog entries address this strategic allocation question.

QQQ vs. Simplest Asset Class ETF Momentum Strategy?

“Simplest Asset Class ETF Momentum Strategy Update” updates performance of a strategy that each month holds SPDR S&P 500 ETF Trust (SPY) or iShares 20+ Year Treasury Bond (TLT) depending on which has the higher total return over the last three months, including a direct comparison to a portfolio that each month allocates 50% to Simple Asset Class ETF Value Strategy (SACEVS) Best Value and 50% to Simple Asset Class ETF Momentum Strategy (SACEMS) equal-weighted (EW) Top 2. A subscriber asked for additional comparison to a strategy that buys and holds Invesco QQQ Trust (QQQ). As before, we begin the test at the end of June 2006, limited by SACEMS inputs. We ignore monthly switching frictions, to the disadvantage of QQQ. Using monthly dividend-adjusted prices for SPY and TLT starting March 2006 and monthly gross returns for 50-50 SACEVS Best Value and SACEMS EW Top 2 and dividend-adjusted prices for QQQ starting July 2006, all through October 2023 (17.3 years), we find that:

Keep Reading

Volatility-adjusted Retirement Income Streams

Should investors consider portfolio volatility when choosing allocations to stocks and bonds in their retirement accounts? In his October 2023 paper entitled “Retirement Planning: The Volatility-Adjusted Coverage Ratio”, Javier Estrada introduces volatility-adjusted coverage ratio (VAC) as an alternative retirement portfolio metric. He defines this metric as coverage ratio (C, number of years of withdrawals supported relative to retirement period length) divided by annual portfolio volatility during retirement. He compares optimal stocks-bonds allocations for different fixed real annual withdrawal rates across 22 country markets and the world market using either C of VAC. For all markets and withdrawal rates, he uses historical returns for stocks and bonds with annual portfolio rebalancing and 30-year retirement periods. Using annual returns for stocks and bonds and annual inflation rates in the U.S. during 1872 through 2022 (Shiller data) and in 21 other countries during 1900 through 2019 (Dimson-Marsh-Staunton data), he finds that: Keep Reading

SACEVS-SACEMS Leverage Sensitivity Tests

“SACEMS with Margin” investigates the use of target 2X leverage via margin to boost the performance of the “Simple Asset Class ETF Momentum Strategy” (SACEMS). “SACEVS with Margin” investigates the use of target 2X leverage via margin to boost the performance of the “Simple Asset Class ETF Value Strategy” (SACEVS). In response, a subscriber requested a sensitivity test of 1.25X, 1.50X and 1.75X leverage targets. To investigate effects of these leverage targets, we separately augment SACEVS Best Value, SACEMS EW Top 2 and the equally weighted combination of these two strategies by: (1) initially applying target leverage via margin; (2) for each month with a positive portfolio return, adding margin at the end of the month to restore target leverage; and, (3) for each month with a negative portfolio return, liquidating shares at the end of the month to pay down margin and restore target leverage. Margin rebalancings are concurrent with portfolio reformations. We focus on gross monthly Sharpe ratiocompound annual growth rate (CAGR) and maximum drawdown (MaxDD) for committed capital as key performance statistics. We use the 3-month Treasury bill (T-bill) yield as the risk-free rate. Using monthly total (dividend-adjusted) returns for the specified assets since July 2002 for SACEVS and since July 2006 for SACEMS, both through October 2023, we find that:

Keep Reading

SACEVS with Margin

Is leveraging with margin a good way to boost the performance of the “Simple Asset Class ETF Value Strategy” (SACEVS)? To investigate effects of margin, we augment SACEVS by: (1) initially applying 2X leverage via margin (limited by Federal Reserve Regulation T); (2) for each month with a positive portfolio return, adding margin at the end of the month to restore 2X leverage; and, (3) for each month with a negative portfolio return, liquidating shares at the end of the month to pay down margin and restore 2X leverage. Margin rebalancings are concurrent with portfolio reformations. We focus on gross monthly Sharpe ratiocompound annual growth rate (CAGR) and maximum drawdown (MaxDD) for committed capital as key performance statistics for Best Value (which picks the most undervalued premium) and Weighted (which weights all undervalued premiums according to degree of undervaluation) variations of SACEVS. We use the 3-month Treasury bill (T-bill) yield as the risk-free rate and consider a range of margin interest rates as increments to this yield. Using monthly total returns for SACEVS and monthly T-bill yields during July 2002 through October 2023, we find that:

Keep Reading

SACEMS with Margin

Is leveraging with margin a good way to boost the performance of the “Simple Asset Class ETF Momentum Strategy” (SACEMS)? To investigate effects of margin, we augment SACEMS by: (1) initially applying 2X leverage via margin (limited by Federal Reserve Regulation T); (2) for each month with a positive portfolio return, adding margin at the end of the month to restore 2X leverage; and, (3) for each month with a negative portfolio return, liquidating shares at the end of the month to pay down margin and restore 2X leverage. Margin rebalancings are concurrent with portfolio reformations. We focus on gross monthly Sharpe ratiocompound annual growth rate (CAGR) and maximum drawdown (MaxDD) for committed capital as key performance statistics for the Top 1, equally weighted (EW) Top 2 and EW Top 3 portfolios of monthly winners. We use the 3-month Treasury bill (T-bill) yield as the risk-free rate and consider a range of margin interest rates as increments to this yield. Using monthly gross total returns for SACEMS and monthly T-bill yields during July 2006 through October 2023, we find that:

Keep Reading

Seasonal SACEVS-SACEMS Strategy?

A subscriber requested testing of a strategy that holds a combination of 50% Simple Asset Class ETF Value Strategy (SACEVS) Best Value and 50% Simple Asset Class ETF Momentum Strategy (SACEMS) equal-weighted (EW) Top 2 strategies during November through April and idle cash during May through October. We consider three strategies:

  1. Best Value – EW Top 2 – hold Best Value-EW Top 2 during all months.
  2. Best Value – EW Top 2 Seasonal (Idle Cash) – hold Best Value-EW Top 2 during November through April and idle cash during May through October, as requested.
  3. Best Value – EW Top 2 Seasonal (6-month T-bill) – hold Best Value-EW Top 2 during November through April and 6-month U.S. Treasury bills (T-bill) bought at the beginning May each year during May through October.

We run annual statistics for each variation as in “Combined Value-Momentum Strategy (SACEVS-SACEMS)”. Annualized returns are compound annual growth rates. Maximum drawdown is the deepest peak-to-trough drawdown for these strategies based on monthly measurements over the sample period. For Sharpe ratio, to calculate excess annual return, we use average monthly yield on 3-month Treasury bills during a year as the risk-free rate for that year. Using monthly returns for SACEVS Best Value and SACEMS EW Top 2 and the specified T-bill yield during July 2006 through October 2023, we find that: Keep Reading

All Stocks All the Time?

Is the the conventional retirement portfolio glidepath as recommended by many financial advisors, away from stocks and toward bonds over time, really optimal? In their October 2023 paper entitled “Beyond the Status Quo: A Critical Assessment of Lifecycle Investment Advice”, Aizhan Anarkulova, Scott Cederburg and Michael O’Doherty present a lifecycle income/wealth model using stationary block bootstrap simulations (average block length 120 months to preserve long-term behaviors) with labor income uncertainty, Social Security income, longevity uncertainty and historical monthly returns for stock indexes, government bonds and government bills across developed countries. They apply this model to estimate outcomes for several age-dependent, monthly rebalanced portfolios of stocks and bonds, including a representative target-date fund (TDF), as well as some fixed-percentage allocation strategies. They focus on a U.S. couple (a female and a male) who save during working years starting at age 25 and consume Social Security income and savings starting at age 65 with constant real 4% annual withdrawals. They evaluate four outcomes: (1) wealth at retirement; (2) retirement income; (3) conservation of savings; and, (4) bequest at death. Using monthly (local) real returns for domestic stock indexes, international stock indexes, government bonds and government bills as available for 38 developed countries during 1890 through 2019, they find that:

Keep Reading

SACEVS Input Risk Premiums and EFFR

The “Simple Asset Class ETF Value Strategy” (SACEVS) seeks diversification across a small set of asset class exchanged-traded funds (ETF), plus a monthly tactical edge from potential undervaluation of three risk premiums:

  1. Term – monthly difference between the 10-year Constant Maturity U.S. Treasury note (T-note) yield and the 3-month Constant Maturity U.S. Treasury bill (T-bill) yield.
  2. Credit – monthly difference between the Moody’s Seasoned Baa Corporate Bonds yield and the T-note yield.
  3. Equity – monthly difference between S&P 500 operating earnings yield and the T-note yield.

Premium valuations are relative to historical averages. How might this strategy react to changes in the Effective Federal Funds Rate (EFFR)? Using end-of-month values of the three risk premiums, EFFRtotal 12-month U.S. inflation and core 12-month U.S. inflation during March 1989 (limited by availability of operating earnings data) through September 2023, we find that: Keep Reading

Deep Reinforcement Learning Versus MPT

Does machine learning reliably offer better risk-adjusted portfolio performance than traditional modern portfolio theory (MPT)? In their August 2023 paper entitled “Comparing Deep RL and Traditional Financial Portfolio Methods”, Eric Benhamou, Jean-Jacques Ohana, Beatrice Guez, David Saltiel, Rida Laraki and Jamal Atif compare principles, methodologies and risk-adjusted performances of dynamic deep reinforcement learning (DRL) and MPT. The DRL approach seeks long-only allocations that maximize Sharpe ratio (calculated assuming a zero risk-free rate). DRL training data includes individual asset returns, portfolio drawdown and contextual variables including U.S. and European interest rates, the CBOE volatility index (VIX), credit default swap prices, currency rates (U.S. dollar index), GDP and CPI forecasts, crude oil/gold/copper inventories and global, U.S., European, Japanese and emerging markets economic surprise indexes. DRL training employs an expanding window, each year training on available historical data and testing on the next year. They consider three MPT portfolios also using expanding window of historical data to estimate inputs: (1) full MPT (Markowitz); (2) minimum variance; and, (3) risk parity. Their global test data consists of daily returns of 11 futures contract series for four major equity indexes, four major bond indexes and three major commodity indexes. They assume trading frictions of 0.02% of value traded. Using the specified (groomed) data during 2000 through mid-2023, they find that: Keep Reading

Kick Alternative Assets to the Curb?

Alternative assets (private equity, private market real estate, hedge funds and other assets apart from stocks and bonds) constitute approximately 30% of U.S. public pension fund portfolios and 60% of large U.S. endowment portfolios. Are they beneficial? In his August 2023 paper entitled “Have Alternative Investments Helped or Hurt?”, Richard Ennis examines impacts of alternative assets on 59 pension fund portfolios, individually and in equal-weighted composite. His key performance metric is alpha relative to static allocations to a mix of stock and bond indexes selected to match the style of each pension fund (or composite of funds) by statistical returns fitting. The stock and bond index choices are Russell 3000 stock index, MSCI ACWI ex-US stock index (hedged and unhedged) and Bloomberg US Aggregate bond index. He thereby creates a unique benchmark for each fund with which to measure its alpha. Using returns and allocations for 59 large U.S. public pension funds with a common June 30 year-end and returns for the benchmarking stock and bond indexes during 2009 through 2021, he finds that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)