Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for December 2024 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for December 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Momentum Investing

Do financial market prices reliably exhibit momentum? If so, why, and how can traders best exploit it? These blog entries relate to momentum investing/trading.

Complex Intraday Time Series Momentum Strategy Applied to SPY

Is intraday time series momentum of a very liquid exchange-traded fund (ETF) such as SPDR S&P 500 ETF Trust (SPY) exploitable? In their May 2024 paper entitled “Beat the Market: An Effective Intraday Momentum Strategy for S&P500 ETF (SPY)”, Carlo Zarattini, Andrew Aziz and Andrea Barbon iteratively construct and test a SPY intraday time series momentum strategy, with alternatives specified as follows:

  • Each minute of each day, compute noise boundaries as daily opening SPY price times one plus and one minus the average daily return up to that minute over the last 14 trading days, adjusting the upper bound up by any gap-down the prior overnight and the lower bound down by any gap-up the prior overnight. When SPY price is between these boundaries, demand and supply are in balance (no trend).
  • If at any clock hour or half-hour (HH:00 or HH:30), SPY price has moved above (below) the upper (lower) boundary, open a long (short) position in SPY. Consider either:
    1. 100% allocation of funds to each trade; or.
    2. An allocation to each trade sized to a volatility target of 2% daily volatility based on actual SPY volatility over the past 14 trading days (allowing up to 4X leverage when actual SPY volatility is below 2%).
  • Consider as dynamic trailing stop-losses, executed at the next clock hour or half-hour, either:
    1. The lower boundary for long positions and the upper boundary for short positions, opening the opposite trade upon triggering a stop-loss; or,
    2. The higher of the upper boundary or the intraday SPY Volume-Weighted Average Price (VWAP) for long positions and the lower of the lower boundary or the intraday VWAP for short positions.
  • Terminate any open positions at each market close to avoid exposure to overnight moves.

They assume trading frictions of $0.0035 per share in commissions plus $0.001 per share in slippage. They explore sensitivity of strategy performance to market volatility (VIX), day of the week, level of trading frictions and recent market direction. They further compare strategy returns to those of well-known technical patterns. Using 1-minute open, high, low and close data for SPY and VIX and 1-minute volume data for SPY during May 2007 through April 2024, they find that: Keep Reading

Are Equity Momentum ETFs Working?

Are stock and sector momentum strategies, as implemented by exchange-traded funds (ETF), attractive? To investigate, we consider nine momentum-oriented equity ETFs, all currently available, in order of longest to shortest available histories:

We focus on monthly return statistics, along with compound annual growth rates (CAGR) and maximum drawdowns (MaxDD). We assign broad market benchmark ETFs according to momentum fund descriptions. Using monthly dividend-adjusted returns for the nine momentum funds and respective benchmarks as available through April 2024, we find that: Keep Reading

Trend Clarity as Driver of Momentum Returns

Is momentum better measured by a granular fitted line or beginning-to-end return? In their March 2024 paper entitled “Trended Momentum”, Charlie Cai, Peng Li and Kevin Keasey investigate use of an analytically/visually clear linear stock price trend to enhance conventional momentum. They measure price trend clarity (TC) as R-squared for a regression of daily price versus date over the past 12 months. Specifically, they each month:

  • Sort stocks into fifths (quintiles) based on conventional momentum, return from 12 months ago to one month ago.
  • Further sort the top momentum quintile into finer quintiles based on TC.
  • Form  equal-weighted or value-weighted portfolios of resulting sorts and compute their gross returns and 3-factor (market, size, book-to-market) alphas over the next six months.

To confirm use of TC to measure clarity of price trend, they separately conduct an experiment that relates analytical TC to trend clarity perceived by sample of 128 individuals each evaluating 10 pairs of stock charts. Their sample includes daily price data for U.S. common stocks from January 1927 through December 2020. Analyses requiring earnings start in 1964, while those involving investor sentiment span 1967 through 2018. They groom all variables to exclude outliers. In further analyses, they employ global stock price data. Using the specified methodology and data, they find that:

Keep Reading

Economic Trend Following

Is an investment strategy that follows trends in economic fundamentals (rather than asset prices) an attractive alternative to conventional momentum? In their January 2024 paper entitled “Economic Trend”, Jordan Brooks, Noah Feilbogen, Yao Hua Ooi and Adam Akant test a strategy that shifts allocations to equity, bond, currency and commodity futures/forwards series based on trends in five important global economic fundamentals, as follows:

  • Growth – 12-month change in GDP growth forecast (increasing growth is good for equities, currencies and commodities, but bad for bonds).
  • Inflation – 12-month change in CPI-based inflation forecasts (increasing inflation is good for currencies and commodities, but bad for equities and bonds).
  • International trade – 12-month change in local spot currency exchange rate versus an export-weighted basket (increasing international trade is good for equities, but bad for bonds, currencies and commodities).
  • Monetary policy – 12-month change in 2-year bond yield (increasing yield is good for currencies, but bad for equities, bonds and commodities).
  • Risk aversion – equal-weighted 12-month trailing stock market return and 12-month change in credit spread (increasing risk aversion is good for equities, currencies and commodities, but bad for bonds).

When the above variables are unavailable, they use substitutes. They consider: (1) single-class, equal risk-weighted portfolios based on all five economic fundamental trends; (2) single-fundamental portfolios positioned across all four asset classes; and, (3) an equal risk-weighted composite of all single-class portfolios (the full Economic Trend strategy). For comparison, they form similar portfolios based on equal-weighted 1-month, 3-month and 12-month trailing asset returns. Composite portfolios (both economic trend and price trend) each month target 10% constant volatility based on the last three years of asset class returns. Using economic fundamentals data and monthly prices as available for 15 global equity futures, 9 bond futures, 7 interest rate futures, 8 currency forwards and 20 commodity futures series during January 1970 through December 2022, they find that: Keep Reading

Exploitable Commodity Futures Factor Momentum?

Do published commodity futures factors exhibit exploitable momentum? In their December 2023 paper entitled “Factor Momentum in Commodity Futures Markets”, Yiyan Qian, Xiaoquan Liu and Ying Jiang examine factor momentum in fully collateralized nearest-rolled contracts of various commodity futures. They consider ten factors:

  • MarketS&P Goldman Sachs Commodity Index
  • Basis -slope of futures term structure.
  • Momentum – cross-sectional predictability of past performance.
  • Basis-momentum – slope and curvature of the term structure of futures returns.
  • Hedging pressure – mismatch in hedging and speculating activity.
  • Skewness – investor return distribution preferences and selective hedging.
  • Open interest – existing price positions.
  • Currency beta – changes in the U.S. dollar versus a basket of other currencies.
  • Inflation beta – impact from unexpected inflation.
  • Liquidity – liquidity risk of commodity futures trading.

They calculate return series for each factor by each month buying (selling) the equal-weighted fifth of commodity futures with the highest (lowest) predicted next-month returns. For each factor return series, they then test the ability of returns over the past 1, 3, 6, 9 or 12 months to predict next-month return. Using daily data for 36 commodity futures contracts from U.S. and UK markets (16 agriculture, 6 energy, 3 livestock and 10 metal) as available during January 1985 through May 2022, they find that: Keep Reading

SACEVS and SACEMS Strategy Momentum?

A subscriber suggested that the Simple Asset Class ETF Value Strategy (SACEVS) and the Simple Asset Class ETF Momentum Strategy (SACEMS) may each exhibit return momentum at the strategy level, such that an investor holding both as in Combined Value-Momentum Strategy (SACEVS-SACEMS) may want to tilt each month toward the one with stronger recent returns. To investigate, we test a SACEVS Best Value-SACEMS Equal-Weighted (EW) Top 2 combination strategy that each month assigns 60% weight to the strategy with the higher return over a specified lookback interval and 40% to the one with the lower return (60-40). We consider lookback intervals of 1 to 12 months. We also look at a “full tilt” version for a selected lookback interval. We use standalone SACEVS Best Value, standalone SACEMS EW Top 2 and monthly rebalanced 50% SACEVS Best Value-50% SACEMS EW Top 2 (50-50) as benchmarks. We look at average gross monthly return, standard deviation of monthly returns, monthly gross reward/risk (average monthly return divided by standard deviation), gross compound annual growth rate (CAGR), maximum drawdown (MaxDD) and gross annual Sharpe ratio as key performance metrics. In Sharpe ratio calculations, we employ the average monthly yield on 3-month U.S. Treasury bills during a year as the risk-free rate for that year. Using SACEVS Best Value and SACEMS EW Top 2 gross monthly returns during July 2006 (limited by SACEMS) through January 2024, we find that:

Keep Reading

More International Equity Market Granularity for SACEMS?

A subscriber asked whether more granularity in international equity choices for the “Simple Asset Class ETF Momentum Strategy” (SACEMS), such as considered by Decision Moose, would improve performance. To investigate, we augment/replace international developed and emerging equity market exchange-traded funds (ETF) such that the universe of assets becomes:

  • SPDR S&P 500 (SPY)
  • iShares Russell 2000 Index (IWM)
  • iShares Europe (IEV)
  • iShares MSCI Japan (EWJ)
  • iShares MSCI Pacific ex Japan (EPP)
  • iShares MSCI Emerging Markets Index (EEM)
  • iShares JPMorgan Emerging Markets Bond Fund (EMB)
  • iShares Latin America 40 (ILF)
  • iShares Barclays 20+ Year Treasury Bond (TLT)
  • Vanguard REIT ETF (VNQ)
  • SPDR Gold Shares (GLD)
  • Invesco DB Commodity Index Tracking (DBC)
  • 3-month Treasury bills (Cash)

We compare original (SACEMS Base) and modified (SACEMS Granular), each month picking winners from their respective sets of ETFs based on total returns over a fixed lookback interval. We focus on gross compound annual growth rate (CAGR), gross maximum drawdown (MaxDD) and gross annual Sharpe ratio (average annual excess return divided by standard deviation of annual excess returns, using average monthly T-bill yield during a year to calculate excess returns) as key performance statistics for the Top 1, equally weighted (EW) Top 2 and EW Top 3 portfolios of monthly winners. Using monthly total (dividend-adjusted) returns for the specified assets during February 2006 through December 2023, we find that: Keep Reading

Optimal Intrinsic Momentum and SMA Intervals Across Asset Classes

What are optimal intrinsic/absolute/time series momentum (IM) and simple moving average (SMA) lookback intervals for different asset class proxies? To investigate, we use data for the following eight asset class exchange-traded funds (ETF), plus Cash:

  • Invesco DB Commodity Index Tracking (DBC)
  • iShares JPMorgan Emerging Markets Bond Fund (EMB)
  • iShares MSCI EAFE Index (EFA)
  • SPDR Gold Shares (GLD)
  • iShares Russell 2000 Index (IWM)
  • SPDR S&P 500 (SPY)
  • iShares Barclays 20+ Year Treasury Bond (TLT)
  • Vanguard REIT ETF (VNQ)
  • 3-month Treasury bills (Cash)

For IM tests, we invest in each ETF (Cash) when its return over the past one to 12 months is positive (negative). For SMA tests, we invest in each ETF (Cash) when its price is above (below) its average monthly price at the ends of the last two to 12 months. We focus on compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key metrics for comparing different IM and SMA lookback intervals since earliest ETF data availabilities based on the longest IM lookback interval. Using monthly dividend-adjusted closing prices for the asset class proxies and the yield for Cash over the period July 2002 (or inception if not available by then) through December 2023, we find that:

Keep Reading

Simple Ways to Beat Equal-weighted Stock Portfolios

Academic studies of stock portfolio optimization often use an equal-weighted (EW) strategy as benchmark. Are there simple EW enhancements that researchers ought to consider instead? In their December 2023 paper entitled “Outperforming Equal Weighting”, Antonello Cirulli and Patrick Walker test three sets of enhanced long-only EW portfolios relying solely on past returns:

  1. Momentum-enhanced EW – sort stocks into tenths (deciles) from lowest to highest average weekly return over the last 12 months.
  2. Volatility-enhanced EW – sort stocks into deciles from highest t0 lowest standard deviation of weekly returns over the last five years.
  3. Sharpe ratio-enhanced EW – sort stocks into deciles from lowest to highest Sharpe ratio calculated with weekly returns over the last years.

For each set, they then exclude the bottom 1, 2, 3, 4 or 5 deciles and weight stocks in retained deciles equally for a total of 15 enhanced EW portfolios. They reform all portfolios on the first Wednesday of each month. They then compare net performances of these portfolios to those of simple EW and capitalization-weighted portfolios of all stocks in the universe after debiting 0.1% frictions for turnover. They focus on large-capitalization/liquid stocks and check robustness of findings to subperiods, lookback intervals, level of frictions and rebalancing frequency. Using weekly returns in U.S. dollars, adjusted for splits and dividends, of MSCI USA, Europe, Emerging Markets and Developed Markets stocks starting five years before the test period of April 2002 through March 2022, they find that:

Keep Reading

SACEVS-SACEMS Leverage Sensitivity Tests

“SACEMS with Margin” investigates the use of target 2X leverage via margin to boost the performance of the “Simple Asset Class ETF Momentum Strategy” (SACEMS). “SACEVS with Margin” investigates the use of target 2X leverage via margin to boost the performance of the “Simple Asset Class ETF Value Strategy” (SACEVS). In response, a subscriber requested a sensitivity test of 1.25X, 1.50X and 1.75X leverage targets. To investigate effects of these leverage targets, we separately augment SACEVS Best Value, SACEMS EW Top 2 and the equally weighted combination of these two strategies by: (1) initially applying target leverage via margin; (2) for each month with a positive portfolio return, adding margin at the end of the month to restore target leverage; and, (3) for each month with a negative portfolio return, liquidating shares at the end of the month to pay down margin and restore target leverage. Margin rebalancings are concurrent with portfolio reformations. We focus on gross monthly Sharpe ratiocompound annual growth rate (CAGR) and maximum drawdown (MaxDD) for committed capital as key performance statistics. We use the 3-month Treasury bill (T-bill) yield as the risk-free rate. Using monthly total (dividend-adjusted) returns for the specified assets since July 2002 for SACEVS and since July 2006 for SACEMS, both through October 2023, we find that:

Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)