Investing Expertise
Can analysts, experts and gurus really give you an investing/trading edge? Should you track the advice of as many as possible? Are there ways to tell good ones from bad ones? Recent research indicates that the average “expert” has little to offer individual investors/traders. Finding exceptional advisers is no easier than identifying outperforming stocks. Indiscriminately seeking the output of as many experts as possible is a waste of time. Learning what makes a good expert accurate is worthwhile.
November 6, 2020 - Individual Gurus, Investing Expertise
Do non-professional analysts who publish on Seeking Alpha offer valuable stock-picking advice? In their August 2020 paper entitled “The Cross-Section of Non-Professional Analyst Skill”, Michael Farrell, Russell Jame and Tian Qiu measure skill among such analysts as the hypothetical abnormal return an investor would earn by following reports/recommendations that focus on one common stock over 5-day or 63-day post-publication holding intervals. They classify recommendations as buy or sell using either: (1) disclosed author positions, or (2) sentiment of associated reports inferred from word usage. They measure abnormal return for each recommendation as its 6-factor alpha, adjusting for market, size, book-to-market, profitability, investment and momentum factors calculated from daily returns from 13 months to one month before the recommendation. They further test an implementable trading strategy that buys (sells) at the ask (bid) and subsequently sells (buys) at the bid (ask) price at the end of the holding period, with and without delays of 24 to 72 hours after publication. Using 123,120 Seeking Alpha research reports prepared by 1,879 non-professional analysts (each with at least 10 qualifying reports) and focused on single common stocks, along with contemporaneous stock and factor returns, during 2005 through 2017, they find that:
Keep Reading
October 16, 2020 - Investing Expertise, Strategic Allocation
Which institutional investors do best and why? In the September 2020 update of their paper entitled “The Canadian Pension Fund Model: A Quantitative Portrait”, Alexander Beath, Sebastien Betermier, Chris Flynn and Quentin Spehner compare performances of Canadian pension funds and those of other countries, focusing on Sharpe ratio of the fund assets, Sharpe ratio of the fund net portfolio (long assets and short liabilities) and correlation between fund assets and liabilities. They look at both large (over $10 billion U.S. dollars in assets as of 2018) and small funds. They consider two test periods, five years (2014-2018) and 15 years (2004-2018), excluding funds with missing annual data. The 5-five year sample has 250 funds from 11 countries. The 15-year sample has 105 funds. After comparing performance, they look for reasons why Canadian performance differs. Using performance data, asset allocation strategies and cost structures for the selected 250 pension funds, they find that:
Keep Reading
October 7, 2020 - Investing Expertise
Do sophisticated investors choose investment managers wisely? In their July 2020 paper entitled “Choosing Investment Managers”, Amit Goyal, Sunil Wahal and Deniz Yavuz investigate how institutional investors select investment managers for public equity and fixed income portfolios. For each actual selection, they construct a group of non-selected investment managers competing in the same geographic region, style and year (average 94 for equity and 72 for fixed income). They focus on two selection criteria:
- Investment manager past performance (returns and assets under management for each product offered as collected by eVestment).
- Relationships among institutional investors, investment managers and consultants (as collected by Relationship Science).
Using 6,939 investment manager selections (5,005 equity and 1,934 fixed income) by 2,005 global institutions delegating over $1.6 trillion in assets to 775 unique managers during 2002 through 2017, they find that:
Keep Reading
September 25, 2020 - Big Ideas, Investing Expertise
Should investors buy yield enhancement products (YEP), which typically offer higher-than-market yields from a package comprised of an underlying stock or equity index and a series of short put options? In the August 2020 version of her paper entitled “Engineering Lemons”, Petra Vokata examines gross and net performances of YEPs, which embed fees as a front-end discount (load) allocated partly to issuers and partly to distributing brokers as a commission. Using descriptions of underlying assets and cash flows before and at maturity for 28,383 YEPs linked to U.S. equity indexes or stocks and issued between January 2006 and September 2015, and contemporaneous Cboe S&P 500 PutWrite Index (PUT) returns as a benchmark, she finds that:
Keep Reading
September 9, 2020 - Investing Expertise, Mutual/Hedge Funds, Volatility Effects
How do mutual funds and hedge funds change their stock holdings in response to a sharp market crash? In their July 2020 paper entitled “Where Do Institutional Investors Seek Shelter when Disaster Strikes? Evidence from COVID-19”, Simon Glossner, Pedro Matos, Stefano Ramelli and Alexander Wagner analyze changes in institutional and retail stock holdings during the first quarter of 2020. Using a February-March 2020 snapshot of returns and firm accounting data for non-financial stocks in the Russell 3000 Index, institutional holdings of these stocks as percentages of shares outstanding during the fourth quarter of 2018 through the first quarter of 2020, and number of Robinhood clients (representing retail investors) holding these stocks on December 31, 2019 and March 31, 2020, they find that:
Keep Reading
September 8, 2020 - Investing Expertise, Strategic Allocation
How do U.S. non-profit endowment funds allocate and perform? In their November 2019 paper entitled “The Risk, Reward, and Asset Allocation of Nonprofit Endowment Funds”, Andrew Lo, Egor Matveyev and Stefan Zeume examine recent asset allocations and investment returns of U.S. public non-profit endowment funds. Due to the unstructured nature of asset reporting, they manually assign each asset in each fund to one of nine categories: (1) public equity; (2) fixed income; (3) private equity; (4) cash instruments; (5) hedge funds; (6) real estate; (7) real assets and real return; (8) trusts; and, (9) cooperative investments. Using tax return data encompassing 34,170 endowment funds during 2009 through 2018, they find that: Keep Reading
August 6, 2020 - Individual Investing, Investing Expertise
Can individual investors make a living by day trading? In the June 2020 update of their paper entitled “Day Trading for a Living?”, Fernando Chague, Rodrigo De-Losso and Bruno Giovannetti analyze performances of all Brazilian retail investors who begin trading futures on the main Brazilian stock index during 2013 through 2015 and persist in this trading for at least 300 sessions. They use data for 2012 to identify those who begin trading in 2013, and they use data for 2016-2017 to extend performance evaluations for at least two years of trading. They consider performance both gross and net of exchange and brokerage fees, but they ignore income taxes and expenses such as courses and trading platforms. They employ subsamples and regressions to measure learning while trading. Using trading records for the specified index futures for 19,646 individuals as described during 2012 through 2017, they find that: Keep Reading
July 28, 2020 - Investing Expertise
Will machine learning revolutionize asset management? In their January 2020 paper entitled “Can Machines ‘Learn’ Finance?”, Ronen Israel, Bryan Kelly and Tobias Moskowitz identify and discuss unique challenges in applying machine learning to asset return prediction, with the goal of setting realistic expectations for how much machine learning can improve asset management. Based on general characteristics of financial markets and machine learning algorithms, they conclude that: Keep Reading
July 14, 2020 - Investing Expertise
Can machine learning (ML) algorithms improve stock picking? In the May 2020 version of their paper entitled “Stock Picking with Machine Learning”, Dominik Wolff and Fabian Echterling apply ML to insights from financial research to assess stock picking abilities of different ML algorithms at a weekly horizon. Their potential return predictor inputs include equity factors (size, value/growth, quality, profitability and investment), additional firm fundamentals, and technical indicators (moving averages, momentum, stock betas and volatilities, relative strength indicators and trading volumes). Their ML algorithms include Deep Neural Networks, Long Short-Term Neural Networks, Random Forest, Boosting and Regularized Logistic Regression. They apply these algorithms separately and in combination (by averaging individual predictions) to historical S&P 500 constituents. They test a long-only strategy that each week holds the equal-weighted 50, 100 or 200 stocks with the highest return predictions. Their benchmark is an equal-weighted portfolio of all S&P 500 stocks. They assume a 3-month lag for all fundamental data to avoid look-ahead bias. Using Wednesday (or next trading day if the market is not open on Wednesday) open prices and fundamental data for the historical components of the S&P 500 during January 1999 through December 2019 (1,164 total stocks), they find that: Keep Reading
April 24, 2020 - Investing Expertise
Robo-advisors provide investors automated financial advice with varying levels of sophistication and degrees of individual tailoring. In their December 2019 book chapter entitled “Robo-advising”, Francesco D’Acunto and Alberto Rossi catalog the main features of robo-advising with respect to personalization, discretion, involvement and human interaction. They consider robo-advisors designed to assist short-term and medium-term (active) trading and those designed to guide long-term (passive) investment/accumulation for retirement. They review prior research on effects of robo-advisors regarding investment choices and performance. Based on the body of information on robo-advising, they conclude that: Keep Reading