Value Investing Strategy (Strategy Overview)
Momentum Investing Strategy (Strategy Overview)
Machine Stock Return Forecast Disagreement and Future Return
August 29, 2023 • Posted in Investing Expertise, Volatility Effects
Is dispersion of stock return forecasts from different machine learning models trained on the same history (as a proxy for variation in human beliefs) a useful predictor of stock returns? In their August 2023 paper entitled “Machine Forecast Disagreement”, Turan Bali, Bryan Kelly, Mathis Moerke and Jamil Rahman relate dispersion in 100 monthly stock return predictions for each stock generated by randomly varied versions of a machine learning model applied to 130 firm/stock characteristics. They measure machine return forecast dispersion for each stock as the standard deviation of predicted returns. They then each month sort stocks into tenths (deciles) based on this dispersion, form either a value-weighted or an equal-weighted portfolio for each decile and compute average next-month portfolio return. Their key metric is average next-month return for a hedge portfolio that is each month long (short) the stocks in the lowest (highest) decile of machine return forecast dispersions. Using the 130 monthly firm/stock characteristics and associated monthly stock returns for a broad sample of U.S. common stocks (excluding financial and utilities firms and stocks trading below $5) during July 1966 through December 2022, they find that:
Please log in or subscribe to continue reading...
Gain access to hundreds of premium articles, our momentum strategy, full RSS feeds, and more! Learn more