Hard to Beat Equal Weighting?
January 10, 2017 - Equity Premium, Strategic Allocation
Do any equity asset allocation strategies convincingly outperform equal weighting (1/N) after accounting for data snooping bias and portfolio maintenance frictions? In their December 2016 paper entitled “Asset Allocation Strategies, the 1/N Rule, and Data Snooping”, Po-Hsuan Hsu, Qiheng Han, Wensheng Wu and Zhiguang Cao apply tests based on White’s Reality Check to compare out-of-sample performances of 23 basic allocation strategies and 5,490 combinations of these strategies to that of equal weighting (1/N) after accounting for snooping bias and portfolio frictions. The 23 basic strategies encompass: conventional mean-variance optimization; mean-optimization with parameter shrinkage (to avoid extreme allocations); the capital asset pricing (1-factor) model (CAPM); the Fama-french 3-factor model (market, size, book-to-market); the related 4-factor model (adding momentum); CAPM augmented with a cross-sectional volatility factor; a missing factor extension of CAPM; minimum variance; maximum diversification; equal risk contribution; volatility timing; and, reward-to-risk timing. Strategy combinations use two or three of the basic strategies with weights varied in increments of 10%. They apply these strategies to each of seven sets of equity assets: (1) 25 size and book-to-market sorted U.S. stock portfolios; (2) 49 industry U.S. stock portfolios; (3) the stocks in the Dow Jones Industrial Average; (4) 22 developed country stock indexes; (5) the combination of (1) and (2); (6) 93 long-lived stocks from the S&P 500 Index; and, (7) 100 size and book-to-market sorted U.S. stock portfolios. Specifically, they each month estimate model parameters and asset weights in each dataset based on the most recent 60 months, and then calculate respective strategy performances the next month. They set one-way trading frictions for all assets at either 0.05% or 0.50% to estimate net returns. They focus on associated Sharpe ratios and certainty equivalent returns (CEQ) as strategy performance metrics. Using the specified monthly data mostly since July 1969 (but since July 1990 for developed country markets and since July 1996 for S&P 500 Index stocks) through December 2014, they find that: Keep Reading