Sifting the Factor Zoo
May 29, 2018 - Equity Premium
The body of U.S. stock market research offers hundreds of factors (the factor zoo) to explain and predict return differences across stocks. Is there a reduced set of factors that most accurately and consistently captures fundamental equity risks? In their March 2018 paper entitled “Searching the Factor Zoo”, Soosung Hwang and Alexandre Rubesam employ Bayesian inference to test all possible multi-factor linear models of stock returns and identify the best models. This approach enables testing of thousands of individual assets in combination with hundreds of candidate factors. They consider a universe of 83 candidate factors: the market return in excess of the risk-free rate, plus 82 factors measured as the difference in value-weighted average returns between extreme tenths (deciles) of stocks sorted on stock/firm characteristics. Their stock universe consists of all U.S. listed stocks excluding financial stocks, stocks with market capitalizations less than the NYSE 20th percentile (microcaps) and stocks priced less than $1. They test microcaps separately. They further test 20 sets of test portfolios (300 total portfolios). The overall sample period is January 1980 through December 2016. To assess factor model performance consistency, they break this sample period into three or five equal subperiods. Using the specified data as available over the 36-year sample period, they find that: Keep Reading