Enhancing Stock Market Prediction with Distilled Economic Variables
May 4, 2016 - Economic Indicators, Equity Premium
Can investors exploit economic data for monthly stock market timing? In their September 2015 paper entitled “Getting the Most Out of Macroeconomic Information for Predicting Excess Stock Returns”, Cem Cakmaklı and Dick van Dijk test whether a model employing 118 economic variables improves prediction of monthly U.S. stock market (S&P 500 Index) excess returns based on conventional valuation ratios (dividend yield and price-earnings ratio) and interest rate indicators (risk-free rate, change in risk-free rate and credit spread). Excess return means above the risk-free rate. They each month apply principal component analysis to distill from the 118 economic variables (or from subsets of these variables with the most individual power to predict S&P 500 Index returns) a small group of independent predictive factors. They then regress next-month S&P 500 Index excess returns linearly on these factors and conventional valuation ratios/interest rate indicators over a rolling 10-year historical window to generate excess return predictions. They measure effectiveness of the economic inputs in two ways:
- Directional accuracy of forecasts (proportion of forecasts that accurately predict the sign of next-month excess returns).
- Explicit economic value of forecasts via mean-variance optimal stocks-cash investment strategies that each month range from 200% long to 100% short the stock index depending on monthly excess return predictions as specified and monthly volatility predictions based on daily index returns over the past month, with transaction costs of 0.0%, 0.1% or 0.3%.
Using monthly values of the 118 economic variables (lagged one month to assure availability), conventional ratios/indicators and monthly and daily S&P 500 Index levels during January 1967 through December 2014, they find that: Keep Reading