Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for November 2024 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for November 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Commodity Futures

These entries address investing and trading in commodities and commodity futures as an alternative asset class to equities.

Exploiting Liquidity Needs of Futures-based ETFs

Has growth in futures-based exchange-traded funds (ETF) predictably affected pricing of underlying assets? In his November 2019 paper entitled “Passive Funds Actively Affect Prices: Evidence from the Largest ETF Markets”, Karamfil Todorov investigates impacts of ETF trading on pricing of futures on equity volatility (VIX) and commodities, the two asset classes most dominated by ETFs. He decomposes sources of these impacts into three rebalancing needs: (1) rolling of futures contracts as they expire; (2) inflow/outflow of investor funds; and, (3) maintenance of constant daily leverage. By modeling the fundamental value of VIX futures contracts using S&P 500 Index and VIX option prices, he quantifies non-fundamental ETF rebalancing impacts on VIX futures prices. Finally, he tests a strategy to exploit the need for daily leverage rebalancing by trading against it. Specifically, he approximates daily liquidity provision by each intraday reforming portfolios that short a pair of long and short futures-based ETFs on the same underlying asset (volatility, natural gas, gold or silver). In other words, he shorts at the open and covers at the close each day. Using daily data for selected ETFs and their underlying futures for VIX, U.S. natural gas, silver, gold and oil as available during January 2000 through December 2018, he finds that: Keep Reading

Exploiting VIX Futures Roll Return with ETNs

“Identifying VXX/SVXY Tendencies” finds that S&P 500 implied volatility index (VIX) futures roll return, as measured by the percentage difference in settlement price between the nearest and next nearest VIX futures, may be a useful predictor of iPath S&P 500 VIX Short-Term Futures ETN (VXX) and ProShares Short VIX Short-Term Futures ETF (SVXY) returns. VXX and SVXY target 1X daily performance for VXX and -0.5X for SVXY relative to the S&P 500 VIX Short-Term Futures Index. Is there a way to exploit this predictive power? To investigate, we compare performances of:

  1. SVXY B&H – buying and holding SVXY.
  2. SVXY-Cash – holding SVXY (cash) when prior-day roll return is negative (zero or positive).
  3. SVXY-VXX – holding SVXY (VXX) when prior-day roll return is negative (zero or positive).

We focus on compound annual growth rate (CAGR) and maximum drawdown (MaxDD) as key performance statistics. Using daily split-adjusted closing prices for SVXY and VXX and daily settlement prices for VIX futures from SVXY inception (October 2011) through December 2019, we find that:

Keep Reading

Identifying VXX/SVXY Tendencies

Are there reliable predictors supporting strategies for timing exchange-traded notes (ETN) constructed from near-term S&P 500 Volatility Index (VIX) futures, such as iPath S&P 500 VIX Short-Term Futures ETN (VXX) and ProShares Short VIX Short-Term Futures ETF (SVXY), available since 1/30/09 and 10/4/11, respectively. The managers of these securities buy and sell VIX futures daily to maintain a constant maturity of one month, continually rolling partial positions from nearest to next nearest contracts. VXX and SVXY target 1X and -0.5X daily performance relative to the S&P 500 VIX Short-Term Futures Index, respectively. We consider five potential predictors for these ETNs:

  1. Level of VIX, in case a high (low) level indicates a future decrease (increase) in VIX that might affect VXX and SVXY.
  2. Change in VIX (VIX “return”), in case there is some predictable reversion or momentum for VIX that might affect VXX and SVXY.
  3. Implied volatility of VIX (VVIX), in case uncertainty in the expected level of VIX might affect VXX and SVXY.
  4. Term structure of VIX futures (roll return) underlying VXX and SVXY, as measured by the percentage difference in settlement price between the nearest and next nearest VIX futures, indicating a price headwind or tailwind for a fund manager continually rolling from one to the other. VIX roll return is usually negative (contango), but occasionally positive (backwardation).
  5. Volatility Risk Premium (VRP), estimated as the difference between VIX and the annualized standard deviation of daily S&P 500 Index returns over the past 21 trading days (multiplying by the square root of 250 to annualize), in case this difference between expectations and recent experience indicates the direction of future change in VIX. VRP is usually positive, but occasionally negative.

We measure predictive power of each in two ways: (1) correlations between daily VXX and SVXY returns over the next 21 trading days to daily predictor values; and, (2) average next-day SVXY returns by ranked tenth (decile) of daily predictor values. Using daily levels of VIX and VVIX, settlement prices for VIX futures contracts, level of the S&P 500 Index and split-adjusted prices for VXX and SVXY from inceptions of the ETNs through December 2019, we find that: Keep Reading

Commodity Futures Risk Premium Over the Long Run

What are long run returns for commodity futures? In their September 2019 paper entitled “The Commodity Futures Risk Premium: 1871-2018”, Geetesh Bhardwaj, Rajkumar Janardanan and Geert Rouwenhorst estimate the historical risk premium of commodity futures from a long and broad sample free of survivorship bias covering 230 contract series traded since 1871 mostly in the U.S. and the UK. They calculate the premium as average excess return for rolling front-month contracts in three ways: (1) simple equal weighting of all monthly observations; (2) equal-weighted separately calculated premiums for each contract series; and, (3) average excess return for an equal‐weighted index series. They explore the link between survival of a contract series and its risk premium. They also estimate returns to basis or momentum factor strategies that are each month long (short) the equal-weighted half of available commodities with the higher (lower) futures basis or prior-year spot return. Using monthly prices for 230 commodity futures traded on 28 exchanges during 1871 through 2018, they find that: Keep Reading

Stocks Plus Trend Following Managed Futures?

A subscriber asked about an annually rebalanced portfolio of 50% stocks and 50% trend following managed futures as recommended in a 2014 Greyserman and Kaminski book [Trend Following with Managed Futures: The Search for Crisis Alpha], suggesting Equinox Campbell Strategy I (EBSIX) as an accessible managed futures fund. To investigate, we consider not only EBSIX (inception March 2013) but also a longer trend following hedge fund index with monthly returns back to December 1999. This alternative “is an equally weighted index of 37 constituent funds…designed to provide a broad measure of the performance of underlying hedge fund managers who invest with a trend following strategy.” The correlation of monthly returns between this index and EBSIX during April 2013 through February 2019 is 0.84, indicating strong similarity. We use SPDR S&P 500 (SPY) as a proxy for stocks. Using annual returns for EBSIX during 2014-2018 and for the trend following hedge fund index and SPY during 2000-2018, we find that: Keep Reading

Commodity Futures Strategies Over the Very Long Run

Do momentum (nearest contract 12-month excess return), value (spot price change from one year ago to five years ago) and basis (12-month average ratio of nearest to next-nearest contract prices) commodity futures premiums hold up over the very long run? In their February 2019 paper entitled “Two Centuries of Commodity Futures Premia: Momentum, Value and Basis”, Christopher Geczy and Mikhail Samonov measure momentum, value and basis premiums with a 141-year sample of commodity futures contract prices, focusing on a previously untested old subsample. Specifically, they each month for each premium categorize each contract series as high, middle or low. They then measure gross performances of long-short (equally weighted high minus low) and long-only (equally weighted high) portfolios for each premium. They further assess diversification benefits by comparing a stocks-bonds portfolio with stocks-bonds-commodity futures portfolios. Using 25,595 nearest contract month returns (averaging 15.2 commodities per month for the full sample, but only 7.1 per month for the old untested subsample through 1959), U.S. stock and bond market returns and U.S. Treasury bill (T-bill) yield as the risk-free rate during 1877 through 2017, they find that:

Keep Reading

Net Speculators Position as Futures Return Predictor

Should investors rely on aggregate positions of speculators (large non-commercial traders) as indicators of expected futures market returns? In their November 2018 paper entitled “Speculative Pressure”, John Hua Fan, Adrian Fernandez-Perez, Ana-Maria Fuertes and Joëlle Miffre investigate speculative pressure (net positions of speculators) as a predictor of futures contract prices across four asset classes (commodity, currency, equity index and interest rates/fixed income) both separately and for a multi-class portfolio. They measure speculative pressure as end-of-month net positions of speculators relative to their average weekly net positions over the past year. Positive (negative) speculative pressure indicates backwardation (contango), with speculators net long (short) and futures prices expected to rise (fall) as maturity approaches. They measure expected returns via portfolios that systematically buy (sell) futures with net positive (negative) speculative pressure. They compare speculative pressure strategy performance to those for momentum (average daily futures return over the past year), value (futures price relative to its price 4.5 to 5.5 years ago) and carry (roll yield, difference in log prices of  nearest and second nearest contracts). Using open interests of large non-commercial traders from CFTC weekly legacy Commitments of Traders (COT) reports for 84 futures contracts series (43 commodities, 11 currencies, 19 equity indexes and 11 interest rates/fixed income) from the end of September 1992 through most of May 2018, along with contemporaneous Friday futures settlement prices, they find that: Keep Reading

Commodity Futures Momentum and Reversal

Do prices of commodity futures contract series reliably exhibit reversal and/or momentum? In their October 2018 paper entitled “Do Momentum and Reversal Strategies Work in Commodity Futures? A Comprehensive Study”, Andrew Urquhart and Hanxiong Zhang investigate the performance of four momentum/reversal trading strategies as applied to excess return indexes for 29 commodity futures contract series. Excess return indexes invest continuously in nearest S&P GSCI futures, rolling forward during the fifth to ninth business day of each month. The four strategies are:

  1. Pairs reversal trading – At the end of each formation interval, identify the five pairs of indexes (with equal capital commitments) that track most closely based on sum of squared deviations of normalized price differences. During the ensuing trading interval, when the normalized prices of any pairs diverge by at least two standard deviations of formation period differences, go long (short) the member of the pair that is undervalued (overvalued). Close all pair trades when prices re-converge at a daily close or at the end of the trading interval.
  2. Pairs momentum trading – The inverse of pairs reversal trading, wherein the long (short) position is the pair member exhibiting relative strength (weakness) during the trading interval.
  3. Conventional momentum – At the end of each month, rank all indexes by cumulative return over the formation interval. Go long (short) the equal-weighted 30% of assets with the highest (lowest) past returns during the ensuing holding interval.
  4. Nearness to high momentum – At the end of each month, rank all indexes based on nearness to respective formation interval highs. Go long (short) the equal-weighted 30% of assets that are nearest/at (farthest below) past highs during the ensuing holding interval.

They consider nine formation intervals (1, 3, 6, 9, 12, 24, 36, 48 and 60 months) and 21 holding intervals (1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57 and 60 months).They assume that long-short strategies are about 50% collateralized, with capital therefore available to handle holding interval margin calls. They also test effects of 0.69% per year (0.06% per month) transaction costs. Using daily levels of six energy, 10 metal and 13 agriculture and live stock commodity futures excess return indexes during January 1979 through October 2017, they find that:

Keep Reading

Does the Sunspot Cycle Predict Grain Prices?

As a follow-up to “Sunspot Cycle and Stock Market Returns” a reader asked: “Sunspot activity does have a direct relationship to weather. Could one speculate on the agriculture market using the sunspot cycle?” To investigate, we relate sunspot activity to the fairly long U.S. Producer Price Index (PPI) for grains. Using monthly averages of daily sunspot counts and monthly PPI for grains during January 1926 (limited by PPI data) through October 2018, we find that: Keep Reading

Benefits of Volatility Targeting Across Asset Classes

Does volatility targeting improve Sharpe ratios and provide crash protection across asset classes? In their May 2018 paper entitled “Working Your Tail Off: The Impact of Volatility Targeting”, Campbell Harvey, Edward Hoyle, Russell Korgaonkar, Sandy Rattray, Matthew Sargaison, and Otto Van Hemert examine return and risk effects of long-only volatility targeting, which scales asset and/or portfolio exposure higher (lower) when its recent volatility is low (high). They consider over 60 assets spanning stocks, bonds, credit, commodities and currencies and two multi-asset portfolios (60-40 stocks-bonds and 25-25-25-25 stocks-bonds-credit-commodities). They focus on excess returns (relative to U.S. Treasury bill yield). They forecast volatility using realized daily volatility with exponentially decaying weights of varying half-lives to assess sensitivity to the recency of inputs. For most analyses, they employ daily return data to forecast volatility. For S&P 500 Index and 10-year U.S. Treasury note (T-note) futures, they also test high-frequency (5-minute) returns transformed to daily returns. They scale asset exposure inversely to forecasted volatility known 24 hours in advance, applying a retroactively determined constant that generates 10% annualized actual volatility to facilitate comparison across assets and sample periods. Using daily returns for U.S. stocks and industries since 1927, for U.S. bonds (estimated from yields) since 1962, for a credit index and an array of futures/forwards since 1988, and high-frequency returns for S&P 500 Index and 10-year U.S. Treasury note futures since 1988, all through 2017, they find that:

Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)