Objective research to aid investing decisions

Value Investing Strategy (Strategy Overview)

Allocations for November 2024 (Final)
Cash TLT LQD SPY

Momentum Investing Strategy (Strategy Overview)

Allocations for November 2024 (Final)
1st ETF 2nd ETF 3rd ETF

Bonds

Bonds have two price components, yield and response of price to prevailing interest rates. How much of a return premium should investors in bonds expect? How can investors enhance this premium? These blog entries examine investing in bonds.

Financial Distress, Investor Sentiment and Downgrades as Asset Return Anomaly Drivers

What firm/asset/market conditions signal mispricing? In the November 2017 version of their paper entitled “Bonds, Stocks, and Sources of Mispricing”, Doron Avramov, Tarun Chordia, Gergana Jostova and Alexander Philipov investigate drivers of U.S. corporate stock and bond mispricing based on interactions among asset prices, financial distress of associated firms and investor sentiment. They measure financial distress via Standard & Poor’s long term issuer credit rating downgrades. They measure investor sentiment primarily with the multi-input Baker-Wurgler Sentiment Index, but they also consider the University of Michigan Consumer Sentiment index and the Consumer Confidence Index. They each month measure asset mispricing by:

  1. Ranking firms into tenths (deciles) based on each of 12 anomalies: price momentum, earnings momentum, idiosyncratic volatility, analyst forecast dispersion, asset growth, investments, net operating assets, accruals, gross profitability, return on assets and two measures of net share issuance.
  2. Computing for each firm the equally weighted average of its anomaly rankings, such that a high (low) average ranking indicates the firms’s assets are relatively overpriced (underpriced).

Using monthly firm, stock and bond data for a sample of U.S. firms with sufficient data and investor sentiment during January 1986 through December 2016, they find that: Keep Reading

Asset Class Value Spreads

Do value strategy returns vary exploitably over time and across asset classes? In their October 2017 paper entitled “Value Timing: Risk and Return Across Asset Classes”, Fahiz Baba Yara, Martijn Boons and Andrea Tamoni examine the power of value spreads to predict returns for individual U.S. equities, global stock indexes, global government bonds, commodities and currencies. They measure value spreads as follows:

  • For individual stocks, they each month sort stocks into tenths (deciles) on book-to-market ratio and form a portfolio that is long (short) the value-weighted decile with the highest (lowest) ratios.
  • For global developed market equity indexes, they each month form a portfolio that is long (short) the equally weighted indexes with book-to-price ratio above (below) the median.
  • For each other asset class, they each month form a portfolio that is long (short) the equally weighted assets with 5-year past returns below (above) the median.

To quantify benefits of timing value spreads, they test monthly time series (in only when undervalued) and rotation (weighted by valuation) strategies across asset classes. To measure sources of value spread variation, they decompose value spreads into asset class-specific and common components. Using monthly data for liquid U.S. stocks during January 1972 through December 2014, spot prices for 28 commodities during January 1972 through December 2014, spot and forward exchange rates for 10 currencies during February 1976 through December 2014, modeled and 1-month futures prices for ten 10-year government bonds during January 1991 through May 2009, and levels and book-to-price ratios for 13 developed equity market indexes during January 1994 through December 2014, they find that:

Keep Reading

Do Widely Used Market Charts Obscure Reality?

Do widely used charts of equity and bond market performance inculcate harmfully false beliefs among investors? In his September 2017 paper entitled “Stock Market Charts You Never Saw”, Edward McQuarrie dissects some of these charts and outlines cautions to investors in interpreting them. Using very long-term data for U.S. stock and bond markets spanning hundreds of years, he concludes that: Keep Reading

SACEVS Performance When Stocks Rise and Fall

How differently does the “Simple Asset Class ETF Value Strategy” (SACEVS) perform when the U.S. stock market rises and falls? This strategy seeks to exploit relative valuation of the term risk premium, the credit (default) risk premium and the equity risk premium via exchange-traded funds (ETF). To investigate, because the sample period available for mutual funds is much longer than that available for ETFs, we use instead data from “SACEVS Applied to Mutual Funds”. Specifically, each month we reform a Best Value portfolio (picking the asset associated with the most undervalued premium, or cash if no premiums are undervalued) and a Weighted portfolio (weighting assets associated with all undervalued premiums according to degree of undervaluation, or cash if no premiums are undervalued) using the following four assets:

The benchmark is a monthly rebalanced portfolio of 60% stocks and 40% U.S. Treasuries (60-40 VWUSX-VFIIX). We say that stocks rise (fall) during a month when the return for VWUSX is positive (negative) during the SACEVS holding month. Using monthly risk premium estimates, SR and LR, and Best Value and Weighted returns during June 1980 through June 2017 (444 months), we find that:

Keep Reading

SACEVS Performance When Interest Rates Rise and Fall

A subscriber asked how the “Simple Asset Class ETF Value Strategy” (SACEVS) performs when interest rates rise. This strategy seeks to exploit relative valuation of the term risk premium, the credit (default) risk premium and the equity risk premium via exchange-traded funds (ETF). To investigate, because the sample period available for mutual funds is much longer than that available for ETFs, we use instead data from “SACEVS Applied to Mutual Funds”. Specifically, each month we reform a Best Value portfolio (picking the asset associated with the most undervalued premium, or cash if no premiums are undervalued) and a Weighted portfolio (weighting assets associated with all undervalued premiums according to degree of undervaluation, or cash if no premiums are undervalued) using the following four assets:

The benchmark is a monthly rebalanced portfolio of 60% stocks and 40% U.S. Treasuries (60-40 VWUSX-VFIIX). We use the T-bill yield as the short-term interest rate (SR) and the 10-year Constant Maturity U.S. Treasury note (T-note) yield as the long-term interest rate (LR). We say that each rate rises or falls when the associated average monthly yield increases or decreases during the SACEVS holding month. Using monthly risk premium estimates, SR and LR, and Best Value and Weighted returns during June 1980 through June 2017 (444 months), we find that:

Keep Reading

Finding a Better Safe Haven via U.S. Treasuries Dual Momentum

Does a dual momentum selection/weighting approach applied to the U.S. Treasuries term structure identify a safe haven superior to any one duration? In his February 2015 paper entitled “The Search for Crisis Alpha: Weathering the Storm Using Relative Momentum”, Nathan Faber tests a dual momentum safe haven based on U.S. Treasuries of different durations as proxied by either constant maturity indexes or exchange-traded funds (ETFs). He constructs constant maturity indexes from 1-year, 3-year, 5-year, 7-year, 10-year and 20-year constant maturity U.S. Treasuries yields by each month accruing a coupon and repricing at the new yield. For ETFs, he uses total returns for five iShares U.S. Treasuries ETFs: SHY (1-3 years), IEI (3-5 years), IEF (7-10 years), TLH (10-20 years) and TLT (20+ years). The dual momentum approach consists of the following steps:

  1. Calculate the return from 10 months ago to one month ago for each duration.
  2. Subtract from the return of each duration that of 1-year U.S. Treasuries (SHY) if using constant maturity indexes (ETFs) to calculate an excess return as a measure of intrinsic (absolute or time series) momentum.
  3. Discard any durations with negative excess returns.
  4. Rank remaining durations based on risk-adjusted excess returns, with variances used to indicate risk, as a measure of relative momentum and assign weights to these durations based on their ranks. If no durations have positive excess returns, assign 100% weight to 1-year U.S. Treasuries (or SHY if using ETFs).

He then investigates the performance of this dual momentum strategy as a safe haven during S&P 500 crises defined in two ways: (1) drawdowns of at least 20% peak to trough; or, (2) monthly declines of at least 5%. He further tests a specific strategy that is long the S&P 500 Index (or SPY if using ETFs) when above its 10-month SMA (SMA10) and in either the dual momentum safe haven portfolio or in a fixed duration (1-year or 20+ years) when below its SMA10. Using data for the yields/indexes/funds specified above since 1962 for constant maturity index tests and since 2003 for ETF tests, all through 2014, he finds that: Keep Reading

Smart Life Cycle Investing?

Can investors improve retirement glide paths via judicious use of smart beta funds? In their March 2017 paper entitled “Life Cycle Investing and Smart Beta Strategies”, Bill Carson, Sara Shores and Nicholas Nefouse augment a conventional equities-bonds life cycle investing glide path with smart beta strategies. They use a conventional glide path, which gradually decreases the allocation to equities with age to a constant after retirement, to determine target risk levels over the life cycle. When the investor is young, they tilt equities toward the MSCI USA Diversified Multiple-Factor (DMF) Index to boost returns via value, size momentum and quality beta exposures. As the investor approaches retirement, they shift equities to the MSCI USA Minimum Volatility Index, designed to match the market return at lower risk. For bonds, they use the Barclays Constant Weights Index, which has greater diversification and higher Sharpe ratio than a conventional market capitalization-based bond index. They incorporate the specified smart beta indexes into the glide path via a procedure that maximizes Sharpe ratio while matching the risk of the conventional glide path. Specifically, they: (1) deviate no more than 3% from conventional glide path risk; (2) constrain smart beta equities beta relative to the Russell 1000 Index and the MSCI World Index ex U.S. to within 5% of the benchmark equities beta; (3) constrain smart beta bond index duration to within 0.05 years of the benchmark bonds duration; and, (4) require at least 1% allocation to bonds for all target date portfolios. Using monthly data for conventional capitalization-weighted U.S. equity and bond indexes and for the specified smart beta indexes during 2007 through 2016, they find that: Keep Reading

Predicting Anomaly Premiums Across Asset Classes

Are anomaly premiums (expected winners minus losers among assets within a class, based on some asset characteristic) more or less predictable than broad market returns? In their April 2017 paper entitled “Predicting Relative Returns”, Valentin Haddad, Serhiy Kozak and Shrihari Santosh apply principal component analysis to assess the predictability of premiums for published asset pricing anomalies spanning stocks, U.S. Treasuries and currencies. For tractability, they simplify asset classes by forming portfolios of assets within them, as follows:

  • For stocks, they consider the long and short legs of portfolios reformed monthly into tenths (deciles) based on each of the characteristics associated with 26 published stock return anomalies (monthly data for 1973 through 2015).
  • They sort zero-coupon U.S. Treasuries by maturity from one to 15 years to assess term premiums (yield data for 1985 through 2014).
  • They sort individual exchange rates into five portfolios reformed daily based on interest rate differentials with the U.S. to assess the carry trade premium (daily data as available for December 1975 through December 2016).

Using the specified data, they find that: Keep Reading

Interpreting Inverted Yield Curves as Economic Indigestion

Is there a straightforward way to interpret the state of the yield curve as a manifestation of how efficiently the economy is processing information? In his March 2017 paper entitled “Simple New Method to Predict Bear Markets (The Entropic Linkage between Equity and Bond Market Dynamics)”, Edgar Parker Jr. presents and tests a way to understand interaction between bond and equity markets based on arrival and consumption of economic information. He employs Shannon entropy to model the economy’s implied information processing ratio (R/C), with interpretations as follows:

  1. R/C ≈ 1: healthy continuously upward-sloping yield curve when information arrival and consumption rates are approximately equal.
  2. R/C >> 1: low end of the yield curve inverts when information is arriving much faster than it can be consumed.
  3. R/C << 1: high end of the yield curve inverts when information is arriving much slower than it can be consumed.

Under the latter two conditions, massive information loss (entropy growth) occurs, and firms cannot confidently plan. These conditions delay/depress economic growth and produce equity bear markets. He tests this approach by matching actual yield curve data with standardized (normal) R and C distributions that both have zero mean and standard deviation one (such that standardized R and C may be negative). Using daily yields for U.S. Treasuries across durations and daily S&P 500 Index levels during 1990 through 2016, he finds that: Keep Reading

Testing Stock Anomalies in Practical Context

How do widely studied anomalies relate to representative stocks-bonds portfolio returns (rather than the risk-free rate)? In his March 2017 paper entitled “Understanding Anomalies”, Filip Bekjarovski proposes an approach to asset pricing wherein a representative portfolio of stocks and bonds is the benchmark and stock anomalies are a set of investment opportunities that may enhance the benchmark. He therefore employs benchmark-adjusted returns, rather than excess returns, to determine anomaly significance. Specifically, his benchmark portfolio captures the equity, term and default premiums. He considers 10 potentially enhancing anomalies: size, value, profitability, investment, momentum, idiosyncratic volatility, quality, betting against beta, accruals and net share issuance. He estimates each anomaly premium as returns to a portfolio that is each month long (short) the value-weighted tenth, or decile, of stocks with the highest (lowest) expected returns for that anomaly. He assesses the potential of each anomaly in three ways: (1) alphas from time series regressions that control for equity, term and default premiums; (2) performances during economic recessions; and, (3) crash proneness. He measures the attractiveness of adding anomaly premiums to the benchmark portfolio by comparing Sharpe ratios, Sortino ratios and performances during recessions of five portfolios: (1) a traditional portfolio (TP) that equally weights equity, term and default premiums; (2) an equal weighting of size, value and momentum premiums (SVM) as a basic anomaly portfolio; (3) a factor portfolio (FP) that equally weights all 10 anomaly premiums; (4) a mixed portfolio (MP) that equally weights all 13 premiums; and, (5) a balanced portfolio (BP) that equally weights TP and FP. Using monthly returns for the 13 premiums specified above from a broad sample of U.S. stocks and NBER recession dates during July 1963 through December 2014, he finds that: Keep Reading

Login
Daily Email Updates
Filter Research
  • Research Categories (select one or more)