Bonds
Bonds have two price components, yield and response of price to prevailing interest rates. How much of a return premium should investors in bonds expect? How can investors enhance this premium? These blog entries examine investing in bonds.
May 27, 2015 - Bonds, Commodity Futures, Equity Premium, Gold
Does the interaction of paradigmatic indicators of optimism (lumber demand) and pessimism (gold demand) tell investors when to take risk and when to avoid risk? In their May 2015 paper entitled “Lumber: Worth Its Weight in Gold: Offense and Defense in Active Portfolio Management”, Charles Bilello and Michael Gayed examine the recent relative performance of lumber (a proxy for economic activity via construction) and gold (a safe haven) as an indicator of future stock market and bond market performance. Specifically, if lumber futures outperform (underperform) spot gold over the prior 13 weeks, they go on offense (defense) the next week. They test this strategy on combinations of seven indexes comprising a spectrum of risk (listed lowest to highest): BofA Merrill Lynch 5-7 Year Treasury Index (Treasuries); CBOE S&P 500 Buy-Write Index (BuyWrite); S&P 500 Low Volatility Index (Low Volatility); S&P 500 Index (SP500); Russell 2000 Index (R2000); Morgan Stanley Cyclicals Index (Cyclicals); and, S&P 500 High Beta Index (High Beta). Using weekly nearest futures contract prices for random length lumber, weekly spot gold prices and weekly total returns for the seven test indexes during November 1986 (November 1990 for Low Volatility and High Beta) through January 2015, they find that: Keep Reading
April 8, 2015 - Bonds, Equity Premium, Strategic Allocation
Do variable retirement spending strategies offer greater utility than fixed-amount or fixed-percentage strategies? In his March 2015 paper entitled “Making Sense Out of Variable Spending Strategies for Retirees”, Wade Pfau compares via simulation ten retirement spending strategies based on a common set of assumptions. He classifies these strategies into two categories: (1) those based on decision rules (such as fixed real spending and fixed percentage spending); and, (2) actuarial models based on remaining portfolio balance and estimated remaining longevity. His bases comparisons on 10,000 Monte Carlo runs for each strategy. He assumes a retirement portfolio of 50% U.S. stocks and 50% U.S. government bonds with initial value $100,000, rebalanced annually after end-of-year 0.5% fees and beginning-of-year withdrawals. He calibrates initial spending where feasible by imposing a probability of X% (X=10) that real spending falls below $Y (Y=1,500) by year Z of retirement (Z=30). He treats terminal wealth as unintentional (in fact, undesirable), with the essential trade-off between spending more now and having to cut spending later. He ignores tax implications. Using historical return data from Robert Shiller and current levels of inflation and interest rates (see the chart below), he finds that: Keep Reading
April 6, 2015 - Bonds
Does a factor (style) premium model identify exploitable abnormal corporate bond returns? In their March 2015 paper entitled “Investing with Style in Corporate Bonds”, Ronen Israel, Johnny Kang and Scott Richardson investigate the usefulness of four bond return factors:
- Carry – the fixed spread that must be added to the U.S. Treasuries yield curve such that the discounted payments of the corporate bond match its traded market price.
- Defensive (low-risk) – corporate bond from an issuer with low levels of market leverage (total debt divided by the sum of total debt and market value of equity).
- Momentum – trailing 6-month corporate bond return in excess of the risk-free rate.
- Value – corporate bond with a high carry relative to the issuer’s fundamental distance-to-default (measured via linear regression).
Specifically, they measure the ability of these four factors to explain future excess (negating the role of interest rates) returns of different corporate bonds. They also test exploitability via a long-only portfolio with exposure to the factors. Finally, they check the degrees to which actively managed credit hedge and mutual funds actually exploit the factors. Using monthly data for a broad (but filtered) sample of U.S. corporate bonds/issuers (10,825 bonds and 5,300 issuers) and monthly return data for 213 actively managed credit hedge funds and 218 actively managed credit mutual funds during January 1997 through December 2013, they find that: Keep Reading
March 19, 2015 - Bonds, Calendar Effects, Commodity Futures, Currency Trading, Economic Indicators, Equity Premium
Does fourth quarter global economic data set the stage for asset class returns the next year? In their February 2015 paper entitled “The End-of-the-year Effect: Global Economic Growth and Expected Returns Around the World”, Stig Møller and Jesper Rangvid examine relationships between level of global economic growth and future asset class returns, focusing on growth at the end of the year. Their principle measure of global economic growth is the equally weighted average of quarterly OECD industrial production growth in 12 developed countries. They perform in-sample tests 30 countries and out-of-sample tests for these same 12 countries (for which more data are available). Out-of-sample tests: (1) generate initial parameters from 1970 through 1989 data for testing during 1990 through 2013 period; and, (2) insert a three-month delay between economic growth data and subsequent return calculations to account for publication lag. Using global industrial production growth as specified, annual total returns for 30 country, two regional and world stock indexes, currency spot and one-year forward exchange rates relative to the U.S. dollar, spot prices on 19 commodities, total annual returns for a global government bond index and a U.S. corporate bond index, and country inflation rates as available during 1970 through 2013, they find that: Keep Reading
March 10, 2015 - Bonds, Economic Indicators, Strategic Allocation
Is the reward for holding risky bonds material and distinct from the reward for holding stocks and the reward for holding longer term bonds? In their February 2015 paper entitled “Credit Risk Premium: Its Existence and Implications for Asset Allocation”, Attakrit Asvanunt and Scott Richardson measure and explore the predictability and diversification power of the credit (or default) risk premium associated with corporate bonds. They focus on the premium associated with creditworthiness of bonds by first removing the influence of duration/interest rates. They also test whether the credit risk premium diversifies the equity risk premium and the bond term premium. Using data for U.S. corporate bonds, the U.S. stock market, U.S. Treasury securities and economic indicators during 1927 through 2014 and for credit default swaps (CDS) during 2004 through 2014, they find that: Keep Reading
March 5, 2015 - Bonds, Momentum Investing
A subscriber requested corroboration of the findings in “Simple Debt Class Mutual Fund Momentum Strategy” with a universe restricted to a family of bond funds (such as Fidelity) to enable low-cost fund switching. We therefore apply the strategy to the following ten Fidelity mutual funds:
Investment Grade Bond (FBNDX)
Intermediate Bond (FTHRX)
Government Income (FGOVX)
Mortgage Securities (FMSFX)
GNMA (FGMNX)
Short-Term Bond (FSHBX)
Limited Term Government (FFXSX)
Convertible Securities (FCVSX)
Intermediate Government Income (FSTGX)
Fidelity New Markets Income (FNMIX)
Per the prior test, we allocate all funds at the end of each month to the fund with the highest total return over the past three months (3-1). We determine the first winner in May 1994 to accommodate momentum measurement interval sensitivity testing. Using monthly dividend-adjusted closing prices for the ten funds during May 1993 (as limited by FNMIX) through January 2015 (261 months), we find that: Keep Reading
February 20, 2015 - Bonds, Equity Premium, Strategic Allocation
Does optimal asset allocation, as measured by Sharpe ratio, depend on investment horizon? In their January 2015 paper entitled “Optimal Asset Allocation Across Investment Horizons”, Ronald Best, Charles Hodges and James Yoder explore the optimal (highest Sharpe ratio) mix of long-term U.S. corporate bonds and large-capitalization U.S. common stocks across investment horizons from one to 25 years. They test portfolios ranging from 100%-0% to 0%-100% stocks-bonds in 5% increments with annual rebalancing. They estimate annual returns for stocks and bonds based on 87 years of historical data. They simulate the portfolio return distribution for a given n-year holding period via 2,500 iterations for each of two methods:
- Randomly select with replacement n years from the 87 years in the historical sample and use the annual returns for U.S. Treasury bills (T-bills, the risk-free rate), stocks and bonds for those n years in the order selected to calculate portfolio gross compound n-year excess returns. This method assumes year-to-year independence (zero autocorrelations) of annual returns for stocks and bonds, meaning no momentum or reversion.
- Randomly select a year from the first 87 – (n-1) years in the historical sample and use the annual returns for T-bills, stocks and bonds for that and the next n-1 consecutive years to calculate portfolio gross compound n-year excess returns. This method preserves historical autocorrelations in return series.
Using annual returns for T-bills, U.S. large-capitalization common stocks and U.S. long-term corporate bonds during 1926 through 2012, they find that: Keep Reading
February 18, 2015 - Bonds, Equity Premium, Strategic Allocation
What is the best mix of stocks and bonds to hold during retirement worldwide? In his January 2015 paper entitled “The Retirement Glidepath: An International Perspective”, Javier Estrada compares outcomes for different stocks-bonds allocation strategies during retirement from a global perspective. He considers declining equity, rising equity and static glidepaths with an annual withdrawal rate of 4% (of the portfolio value at retirement) and annual rebalancing during a 30-year retirement period. He tests the following glidepaths:
- Four declining equity strategies that begin with 100%-0%, 90%‐10%, 80%‐20% and 70%‐30% stocks-bonds allocations and shift toward bonds linearly via annual rebalancing.
- Four mirror-image rising equity strategies that begin with 0%-100%, 10%-90%, 20%-80% and 30%-70% stocks-bonds allocations and shift toward stocks linearly via annual rebalancing.
- Eleven static allocations ranging from 100%-0% to 0%-100% stocks-bonds allocations maintained via annual rebalancing, with focus on conventional or near-conventional 60%-40%, 50%-50% and 40%-60% allocations.
He focuses on the failure rate of these strategies during 81 overlapping 30-year retirement periods during 1900-2009. He also considers average and median terminal wealth/bequest, tail risk, annual volatility (standard deviation of annual returns) and upside potential. He defines tail risk (downside risk) as average terminal wealth for the 1%, 5% or 10% lowest values from the 81 periods. Using annual total real returns for stocks and government bonds for 19 countries (in local currency adjusted by local inflation) and for the world market (in dollars adjusted by U.S. inflation) during 1900 through 2009 (110 years), he finds that: Keep Reading
February 4, 2015 - Bonds, Momentum Investing, Strategic Allocation
In reference to “Optimal Monthly Cycle for Simple Asset Class ETF Momentum Strategy?”, a subscriber asked about an optimal monthly cycle for the “Simple Debt Class Mutual Fund Momentum Strategy”. This latter strategy each month allocates the entire portfolio value to the one of the following 12 debt class mutual funds with the highest past total return (optimally over the last two months):
T. Rowe Price New Income (PRCIX)
Thrivent Income A (LUBIX)
Vanguard GNMA Securities (VFIIX)
T. Rowe Price High-Yield Bonds (PRHYX)
T. Rowe Price Tax-Free High Yield Bonds (PRFHX)
Vanguard Long-Term Treasury Bonds (VUSTX)
T. Rowe Price International Bonds (RPIBX)
Fidelity Convertible Securities (FCVSX)
PIMCO Short-Term A (PSHAX)
Fidelity New Markets Income (FNMIX)
Eaton Vance Government Obligations C (ECGOX)
Vanguard Long-Term Bond Index (VBLTX)
To investigate, we compare 21 variations of the strategy based on shifting the monthly return calculation cycle relative to trading days from the end of the month (EOM). For example, an EOM+5 cycle ranks funds based on closing prices five trading days after EOM each month. We use the historically optimal two-month fund momentum measurement interval. Using daily dividend-adjusted closes for the 12 funds during mid-December 1994 through mid-January 2015 (241 months), we find that: Keep Reading
November 20, 2014 - Bonds
Do factor models predict returns for corporate bonds as they do for stocks? In their October 2014 paper entitled “Factor Investing in the Corporate Bond Market”, Patrick Houweling and Jeroen van Zundert develop and test a four-factor (size, low-risk, value and momentum) model of future corporate bond returns. Each month for investment grade and high yield bond market segments separately, they construct an equally-weighted long-only portfolio consisting of the 10% of bonds with the highest exposure to each factor. They hold portfolios for 12 months, resulting in 12 overlapping portfolios for each segment and factor. Specifically, the factor portfolios are:
- Size – the 10% of bonds with the smallest company index weights, calculated as the sum of market value weights of all company bonds in the index that month.
- Low-risk – a combination of rating and maturity. For investment grade, the portfolio holds the 10% of bonds rated AAA to A- and having the shortest maturities. For high yield, the portfolio holds the 10% of bonds rated BB+ to B- and having the shortest maturities. On average, the maturity threshold is 2.8 (3.7) years for investment grade (high yield).
- Value – the 10% of bonds with the largest percentage gaps between actual credit spread and credit spread indicated by monthly regressions of credit spread on rating.
- Momentum – the 10% of bonds with the highest return relative to duration-matched U.S. Treasuries from six months ago to one month ago (with a skip-month to avoid reversal).
They evaluate factor portfolio performance based on excess return of constituent corporate bonds versus duration-matched U.S. Treasuries (thereby focusing on the default premium component of corporate bond returns). To estimate trading frictions, they model bid-ask spreads based on maturity and rating (the longer maturity or the lower the rating, the larger the estimated trading friction). Portfolio-level trading frictions are sums of frictions for all bonds traded. Using monthly data for all bonds in the Barclays U.S. Corporate Investment Grade index and the Barclays U.S. Corporate High Yield index during January 1994 through December 2013 (about 800,000 investment grade and 300,000 high yield bond-month observations), they find that: Keep Reading